Highly sensitive detection of hybridization of oligonucleotides to specific sequences of nucleic acids by application of fluorescence resonance energy transfer

We show a new application of fluorescence resonance energy transfer (FRET) in two stages to detect specific sequences of nucleic acids. In the first stage, two fluorescently tagged oligonucleotides hybridize with a complementary target molecule to produce FRET. The sequences of the oligonucleotides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antisense & nucleic acid drug development 2000-04, Vol.10 (2), p.97-103
Hauptverfasser: Lazowski, K W, Kaczmarek, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show a new application of fluorescence resonance energy transfer (FRET) in two stages to detect specific sequences of nucleic acids. In the first stage, two fluorescently tagged oligonucleotides hybridize with a complementary target molecule to produce FRET. The sequences of the oligonucleotides and spectral properties of fluorophores are chosen to provide a basis for an efficient energy transfer. In the next step, the specificity of hybridization is tested by competition of labeled probes with an excess of unlabeled oligonucleotides of the same sequence. The resulting emission spectra, one obtained in the excess of unlabeled donor probe and the other produced in the excess of unlabeled acceptor probe, are compared with the spectrum from the first stage to look for differences in the emission pattern of the fluorescent labels. We show that it is possible to detect the existence of specific hybrids composed of the two probes and complementary target molecule even in very unfavorable conditions, such as the presence of unhybridized probes in the final reaction mixture, secondary nonacceptor quenching of donor probe fluorescence, and strong background emission of acceptor produced by its direct excitation with a donor excitation light.
ISSN:1087-2906
DOI:10.1089/oli.1.2000.10.97