Effect of indomethacin and deendothelisation on vascular responses in the renal artery
Vasodilator prostaglandins (PGE2, PGI2) play an important role in the regulation of renal blood flow. Hence, inhibition of their production with nonsteroidal anti-inflammatory drugs increases renal vascular resistance and exerts adverse renal effects. It has been reported that besides endothelium-de...
Gespeichert in:
Veröffentlicht in: | Physiological research 2000, Vol.49 (1), p.129-133 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vasodilator prostaglandins (PGE2, PGI2) play an important role in the regulation of renal blood flow. Hence, inhibition of their production with nonsteroidal anti-inflammatory drugs increases renal vascular resistance and exerts adverse renal effects. It has been reported that besides endothelium-derived prostaglandin products, nitric oxide (NO) may be mainly involved in regulation of renal functions. The aim of our study was to evaluate the effect of cyclooxygenase inhibition with indomethacin and endothelium removal on vascular responses of the renal artery as a model vessel. Isolated segments of rabbit renal arteries were perfused at constant flow. Indomethacin administration (10(-5) mol x l(-1)) significantly increased the responses to single doses (0.1, 1, 10 microg) of noradrenaline (NA) as compared with the controls. In indomethacin-pretreated vessels, subsequent deendothelisation by air bubbles enhanced the constrictor responses to NA. In reversed order, when deendothelisation was followed by indomethacin administration, the responses to NA were similar in character. A comparison of renal artery responses to NA in both experimental situations did not reveal any significant differences. It can be supposed that endothelial and non-endothelial factors may be involved in local regulation of renal vascular tone. |
---|---|
ISSN: | 0862-8408 1802-9973 |
DOI: | 10.33549/physiolres.930000.49.129 |