Dynamics of asexual transmission of a mitochondrial plasmid in Cryphonectria parasitica

In the chestnut blight fungus Cryphonectria parasitica, as in most fungi, little is known about the efficiency of the asexual transmission of optional mitochondrial plasmids, vertically through conidia, and horizontally through hyphal anastomoses. In this paper, we show that pCRY1, a circular mitoch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current genetics 2000-04, Vol.37 (4), p.257-267
Hauptverfasser: Baidyaroy, D, Glynn, J.M, Betrand, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the chestnut blight fungus Cryphonectria parasitica, as in most fungi, little is known about the efficiency of the asexual transmission of optional mitochondrial plasmids, vertically through conidia, and horizontally through hyphal anastomoses. In this paper, we show that pCRY1, a circular mitochondrial plasmid, is transmitted vertically with 100%-efficiency through conidia. Moreover, the plasmid is transmitted horizontally through hyphal contact from donor strains to vegetatively compatible and most incompatible strains. An allelic difference between the donor and recipient strain, at only one of the five nuclear incompatibility genes that were tested strongly inhibited, but did not absolutely prevent, the transfer of pCRY1 through hyphal fusions. In contrast, allelic differences in any one or several of the other four heterokaryon-compatibility loci suppressed the transmission of the plasmid only partially or not at all. The plasmid was also transmitted among incompatible strains by protoplast fusion without the concomitant transfer of mitochondrial DNA (mtDNA). A comparison of plasmid-bearing with plasmid-free isogenic strains revealed that pCRY1 significantly diminishes the pathogenic potency of some strains of the fungus, but does not affect the virulence of others. Collectively, the observations indicate that the introduction of deleterious mitochondrial genetic elements into natural populations may be a means for managing fungal pathogens.
ISSN:0172-8083
1432-0983
DOI:10.1007/s002940050527