A Model of Synaptic Memory: A CaMKII/PP1 Switch that Potentiates Transmission by Organizing an AMPA Receptor Anchoring Assembly

Ca 2+/calmodulin-dependent protein kinase II (CaMKII) is localized in the postsynaptic density (PSD) and is necessary for LTP induction. Much has been learned about the autophosphorylation of CaMKII and its dephosphorylation by PSD protein phosphatase-1 (PP1). Here, we show how the CaMKII/PP1 system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2001-08, Vol.31 (2), p.191-201
Hauptverfasser: Lisman, John E, Zhabotinsky, Anatol M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ca 2+/calmodulin-dependent protein kinase II (CaMKII) is localized in the postsynaptic density (PSD) and is necessary for LTP induction. Much has been learned about the autophosphorylation of CaMKII and its dephosphorylation by PSD protein phosphatase-1 (PP1). Here, we show how the CaMKII/PP1 system could function as an energy-efficient, bistable switch that could be activated during LTP induction and remain active despite protein turnover. We also suggest how recently discovered binding interactions could provide a structural readout mechanism: the autophosphorylated state of CaMKII binds tightly to the NMDAR and forms, through CaMKII-actinin-actin-(4.1/SAP97) linkages, additional sites for anchoring AMPARs at synapses. The proposed model has substantial experimental support and elucidates principles by which a local protein complex could produce stable information storage and readout.
ISSN:0896-6273
1097-4199
DOI:10.1016/S0896-6273(01)00364-6