Characterization of arginine decarboxylase in rat brain and liver: distinction from ornithine decarboxylase

We compared the properties of mammalian arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) in rat liver and brain. Mammalian ADC is thermally unstable and associated with mitochondrial membranes. ADC decarboxylates both arginine (Km = 0.75 mM) and ornithine (Km = 0.25 mM), a reaction not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2000-05, Vol.74 (5), p.2201-2208
Hauptverfasser: Regunathan, S, Reis, D J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compared the properties of mammalian arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) in rat liver and brain. Mammalian ADC is thermally unstable and associated with mitochondrial membranes. ADC decarboxylates both arginine (Km = 0.75 mM) and ornithine (Km = 0.25 mM), a reaction not inhibited by the specific ODC inhibitor, difluoromethylomithine. ADC activity is inhibited by Ca2+, Co2+, and polyamines, is present in many organs being highest in aorta and lowest in testis, and is not recognized by a specific monoclonal antibody to ODC. In contrast, ODC is thermally stable, cytosolic, and mitochondrial and is expressed at low levels in most organs except testis. Although ADC and ODC are expressed in cultured rat C6 glioma cells, the patterns of expression during growth and confluence are very different. We conclude that mammalian ADC differs from ADC isoforms expressed in plants, bacteria, or Caenorhabditis elegans and is distinct from ODC. ADC serves to synthesize agmatine in proximity to mitochondria, an organelle also harboring agmatine's degradative enzyme, agmatinase, and a class of imidazoline receptor (I2) to which agmatine binds with high affinity.
ISSN:0022-3042
1471-4159
DOI:10.1046/j.1471-4159.2000.0742201.x