Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress

It is known well that activation of the hexosamine pathway causes insulin resistance, but how this activation influences pancreatic beta-cell function remains unclear. In this study, we found that in isolated rat islets adenovirus-mediated overexpression of glutamine:fructose-6-phosphate amidotransf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-08, Vol.276 (33), p.31099-31104
Hauptverfasser: Kaneto, H, Xu, G, Song, K H, Suzuma, K, Bonner-Weir, S, Sharma, A, Weir, G C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known well that activation of the hexosamine pathway causes insulin resistance, but how this activation influences pancreatic beta-cell function remains unclear. In this study, we found that in isolated rat islets adenovirus-mediated overexpression of glutamine:fructose-6-phosphate amidotransferase (GFAT), the first and rate-limiting enzyme of the hexosamine pathway, leads to deterioration of beta-cell function, which is similar to that found in diabetes. Overexpression of GFAT or treatment with glucosamine results in impaired glucose-stimulated insulin secretion and reduction in the expression levels of several beta-cell specific genes (insulin, GLUT2, and glucokinase). Additionally, the DNA binding activity of PDX-1, an important transcription factor for these three genes, was markedly reduced. These phenomena were not mimicked by the induction of O-linked glycosylation with an inhibitor of O-GlcNAcase, PUGNAc. It was also found that glucosamine increases hydrogen peroxide levels and that several hexosamine pathway-mediated changes were suppressed by treatment with the antioxidant N-acetyl-l-cysteine. In conclusion, activation of the hexosamine pathway leads to deterioration of beta-cell function through the induction of oxidative stress rather than O-linked glycosylation. Thus, the hexosamine pathway may contribute to the deterioration of beta-cell function found in diabetes.
ISSN:0021-9258
DOI:10.1074/jbc.M104115200