Inherited Brugada and Long QT-3 Syndrome Mutations of a Single Residue of the Cardiac Sodium Channel Confer Distinct Channel and Clinical Phenotypes
Defects of the SCN5A gene encoding the cardiac sodium channel α-subunit are associated with both the long QT-3 (LQT-3) subtype of long-QT syndrome and Brugada syndrome (BrS). One previously described SCN5A mutation (1795insD) in the C terminus results in a clinical phenotype combining QT prolongati...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2001-08, Vol.276 (33), p.30623-30630 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Defects of the SCN5A gene encoding the cardiac sodium channel α-subunit are associated with both the long QT-3 (LQT-3) subtype of long-QT syndrome
and Brugada syndrome (BrS). One previously described SCN5A mutation (1795insD) in the C terminus results in a clinical phenotype combining QT prolongation and ST segment elevation,
indicating a close interrelationship between the two disorders. Here we provide additional evidence that these two disorders
are closely related. We report the analysis of two novel mutations on the same codon, Y1795C (LQT-3) and Y1795H (BrS), expressed
in HEK 293 cells and characterized using whole-cell patch clamp procedures. We find marked and opposing effects on channel
gating consistent with activity associated with the cellular basis of each clinical disorder. Y1795H speeds and Y1795C slows
the onset of inactivation. The Y1795H, but not the Y1795C, mutation causes a marked negative shift in the voltage dependence
of inactivation, and neither mutation affects the kinetics of the recovery from inactivation. Interestingly, both mutations
increase the expression of sustained Na + channel activity compared with wild type (WT) channels, although this effect is most pronounced for the Y1795C mutation,
and both mutations promote entrance into an intermediate or a slowly developing inactivated state. These data confirm the
key role of the C-terminal tail of the cardiac Na + channel in the control of channel gating, illustrate how subtle changes in channel biophysics can have significant and distinct
effects in human disease, and, additionally, provide further evidence of the close interrelationship between BrS and LQT-3
at the molecular level. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M104471200 |