Large negative velocity gradients in Burgers turbulence

We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-08, Vol.64 (2 Pt 2), p.026306-026306, Article 026306
Hauptverfasser: Chernykh, A I, Stepanov, M G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 026306
container_issue 2 Pt 2
container_start_page 026306
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 64
creator Chernykh, A I
Stepanov, M G
description We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2).
doi_str_mv 10.1103/PhysRevE.64.026306
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71082108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71082108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-d7885c0f69aa33f62983a5a5ea3c0cb23391a1c31a3c2352e7d55037b321d2203</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EoqXwBzignLil2N74dQRUHlIlEIKz5TibEpQmxU4q9d9j1CIOq52RZubwEXLJ6JwxCjevn7v4htvFXBZzyiVQeUSmjBqRg9LqOGkBJmkhJuQsxi9KgYMuTsmEscIoafSUqKULK8w6XLmh2WK2xbb3zbDLVsFVDXZDzJouuxtTKMRsGEM5tth5PCcntWsjXhz-jHw8LN7vn_Lly-Pz_e0y90DZkFdKa-FpLY1zALXkRoMTTqADT33JAQxzzANLnoPgqCohKKgSOKs4pzAj1_vdTei_R4yDXTfRY9u6DvsxWsWo5ulSkO-DPvQxBqztJjRrF3aWUfuLy_7hsrKwe1ypdHVYH8s1Vv-VAx_4AdCPZuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71082108</pqid></control><display><type>article</type><title>Large negative velocity gradients in Burgers turbulence</title><source>American Physical Society Journals</source><creator>Chernykh, A I ; Stepanov, M G</creator><creatorcontrib>Chernykh, A I ; Stepanov, M G</creatorcontrib><description>We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2).</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.64.026306</identifier><identifier>PMID: 11497698</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-08, Vol.64 (2 Pt 2), p.026306-026306, Article 026306</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-d7885c0f69aa33f62983a5a5ea3c0cb23391a1c31a3c2352e7d55037b321d2203</citedby><cites>FETCH-LOGICAL-c301t-d7885c0f69aa33f62983a5a5ea3c0cb23391a1c31a3c2352e7d55037b321d2203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11497698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chernykh, A I</creatorcontrib><creatorcontrib>Stepanov, M G</creatorcontrib><title>Large negative velocity gradients in Burgers turbulence</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2).</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EoqXwBzignLil2N74dQRUHlIlEIKz5TibEpQmxU4q9d9j1CIOq52RZubwEXLJ6JwxCjevn7v4htvFXBZzyiVQeUSmjBqRg9LqOGkBJmkhJuQsxi9KgYMuTsmEscIoafSUqKULK8w6XLmh2WK2xbb3zbDLVsFVDXZDzJouuxtTKMRsGEM5tth5PCcntWsjXhz-jHw8LN7vn_Lly-Pz_e0y90DZkFdKa-FpLY1zALXkRoMTTqADT33JAQxzzANLnoPgqCohKKgSOKs4pzAj1_vdTei_R4yDXTfRY9u6DvsxWsWo5ulSkO-DPvQxBqztJjRrF3aWUfuLy_7hsrKwe1ypdHVYH8s1Vv-VAx_4AdCPZuY</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Chernykh, A I</creator><creator>Stepanov, M G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010801</creationdate><title>Large negative velocity gradients in Burgers turbulence</title><author>Chernykh, A I ; Stepanov, M G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-d7885c0f69aa33f62983a5a5ea3c0cb23391a1c31a3c2352e7d55037b321d2203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernykh, A I</creatorcontrib><creatorcontrib>Stepanov, M G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernykh, A I</au><au>Stepanov, M G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large negative velocity gradients in Burgers turbulence</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>64</volume><issue>2 Pt 2</issue><spage>026306</spage><epage>026306</epage><pages>026306-026306</pages><artnum>026306</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2).</abstract><cop>United States</cop><pmid>11497698</pmid><doi>10.1103/PhysRevE.64.026306</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-08, Vol.64 (2 Pt 2), p.026306-026306, Article 026306
issn 1539-3755
1063-651X
1095-3787
language eng
recordid cdi_proquest_miscellaneous_71082108
source American Physical Society Journals
title Large negative velocity gradients in Burgers turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20negative%20velocity%20gradients%20in%20Burgers%20turbulence&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Chernykh,%20A%20I&rft.date=2001-08-01&rft.volume=64&rft.issue=2%20Pt%202&rft.spage=026306&rft.epage=026306&rft.pages=026306-026306&rft.artnum=026306&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.64.026306&rft_dat=%3Cproquest_cross%3E71082108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71082108&rft_id=info:pmid/11497698&rfr_iscdi=true