Large negative velocity gradients in Burgers turbulence
We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-p...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-08, Vol.64 (2 Pt 2), p.026306-026306, Article 026306 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 026306 |
---|---|
container_issue | 2 Pt 2 |
container_start_page | 026306 |
container_title | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
container_volume | 64 |
creator | Chernykh, A I Stepanov, M G |
description | We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2). |
doi_str_mv | 10.1103/PhysRevE.64.026306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71082108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71082108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-d7885c0f69aa33f62983a5a5ea3c0cb23391a1c31a3c2352e7d55037b321d2203</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EoqXwBzignLil2N74dQRUHlIlEIKz5TibEpQmxU4q9d9j1CIOq52RZubwEXLJ6JwxCjevn7v4htvFXBZzyiVQeUSmjBqRg9LqOGkBJmkhJuQsxi9KgYMuTsmEscIoafSUqKULK8w6XLmh2WK2xbb3zbDLVsFVDXZDzJouuxtTKMRsGEM5tth5PCcntWsjXhz-jHw8LN7vn_Lly-Pz_e0y90DZkFdKa-FpLY1zALXkRoMTTqADT33JAQxzzANLnoPgqCohKKgSOKs4pzAj1_vdTei_R4yDXTfRY9u6DvsxWsWo5ulSkO-DPvQxBqztJjRrF3aWUfuLy_7hsrKwe1ypdHVYH8s1Vv-VAx_4AdCPZuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71082108</pqid></control><display><type>article</type><title>Large negative velocity gradients in Burgers turbulence</title><source>American Physical Society Journals</source><creator>Chernykh, A I ; Stepanov, M G</creator><creatorcontrib>Chernykh, A I ; Stepanov, M G</creatorcontrib><description>We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2).</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.64.026306</identifier><identifier>PMID: 11497698</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-08, Vol.64 (2 Pt 2), p.026306-026306, Article 026306</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-d7885c0f69aa33f62983a5a5ea3c0cb23391a1c31a3c2352e7d55037b321d2203</citedby><cites>FETCH-LOGICAL-c301t-d7885c0f69aa33f62983a5a5ea3c0cb23391a1c31a3c2352e7d55037b321d2203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11497698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chernykh, A I</creatorcontrib><creatorcontrib>Stepanov, M G</creatorcontrib><title>Large negative velocity gradients in Burgers turbulence</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2).</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EoqXwBzignLil2N74dQRUHlIlEIKz5TibEpQmxU4q9d9j1CIOq52RZubwEXLJ6JwxCjevn7v4htvFXBZzyiVQeUSmjBqRg9LqOGkBJmkhJuQsxi9KgYMuTsmEscIoafSUqKULK8w6XLmh2WK2xbb3zbDLVsFVDXZDzJouuxtTKMRsGEM5tth5PCcntWsjXhz-jHw8LN7vn_Lly-Pz_e0y90DZkFdKa-FpLY1zALXkRoMTTqADT33JAQxzzANLnoPgqCohKKgSOKs4pzAj1_vdTei_R4yDXTfRY9u6DvsxWsWo5ulSkO-DPvQxBqztJjRrF3aWUfuLy_7hsrKwe1ypdHVYH8s1Vv-VAx_4AdCPZuY</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Chernykh, A I</creator><creator>Stepanov, M G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010801</creationdate><title>Large negative velocity gradients in Burgers turbulence</title><author>Chernykh, A I ; Stepanov, M G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-d7885c0f69aa33f62983a5a5ea3c0cb23391a1c31a3c2352e7d55037b321d2203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernykh, A I</creatorcontrib><creatorcontrib>Stepanov, M G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernykh, A I</au><au>Stepanov, M G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large negative velocity gradients in Burgers turbulence</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>64</volume><issue>2 Pt 2</issue><spage>026306</spage><epage>026306</epage><pages>026306-026306</pages><artnum>026306</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2).</abstract><cop>United States</cop><pmid>11497698</pmid><doi>10.1103/PhysRevE.64.026306</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-08, Vol.64 (2 Pt 2), p.026306-026306, Article 026306 |
issn | 1539-3755 1063-651X 1095-3787 |
language | eng |
recordid | cdi_proquest_miscellaneous_71082108 |
source | American Physical Society Journals |
title | Large negative velocity gradients in Burgers turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20negative%20velocity%20gradients%20in%20Burgers%20turbulence&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Chernykh,%20A%20I&rft.date=2001-08-01&rft.volume=64&rft.issue=2%20Pt%202&rft.spage=026306&rft.epage=026306&rft.pages=026306-026306&rft.artnum=026306&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.64.026306&rft_dat=%3Cproquest_cross%3E71082108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71082108&rft_id=info:pmid/11497698&rfr_iscdi=true |