Large negative velocity gradients in Burgers turbulence

We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-08, Vol.64 (2 Pt 2), p.026306-026306, Article 026306
Hauptverfasser: Chernykh, A I, Stepanov, M G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider one-dimensional Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is, the velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of Balkovsky et al. [Phys. Rev. Lett. 78, 1452 (1997)] based on short-time estimations that the left tail of PDF has the form ln P(u(x))infinity-/u(x)/(3/2).
ISSN:1539-3755
1063-651X
1095-3787
DOI:10.1103/PhysRevE.64.026306