Synthesis, Mechanism of Action, and Antiviral Activity of a New Series of Covalent Mechanism-Based Inhibitors of S-Adenosyl-l-Homocysteine Hydrolase
A direct method for the preparation of 5‘-S-alkynyl-5‘-thioadenosine and 5‘-S-allenyl-5‘-thioadenosine has been developed. Treatment of a protected 5‘-acetylthio-5‘-deoxyadenosine with sodium methoxide and propargyl bromide followed by deprotection gave the 5‘-S-propargyl-5‘-thioadenosine 4. Under c...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2001-08, Vol.44 (17), p.2743-2752 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A direct method for the preparation of 5‘-S-alkynyl-5‘-thioadenosine and 5‘-S-allenyl-5‘-thioadenosine has been developed. Treatment of a protected 5‘-acetylthio-5‘-deoxyadenosine with sodium methoxide and propargyl bromide followed by deprotection gave the 5‘-S-propargyl-5‘-thioadenosine 4. Under controlled base-catalysis with sodium tert-butoxide in tert-butyl alcohol 4 was quantitatively converted into 5‘-S-allenyl-5‘-thioadenosine 5 or 5‘-S-propynyl-5‘-thioadenosine 6. Incubation of recombinant human placental AdoHcy hydrolase with 4, 5, or 6 resulted in time- and concentration-dependent inactivation of the enzyme (K i: 45 ± 0.5, 16 ± 1, and 15 ± 1 μM, respectively). Compound 4 caused complete conversion of the enzyme from its E-NAD+ to E-NADH form during the inactivation process. This indicates that 4 is a substrate for the 3‘-oxidative activity of AdoHcy hydrolase (type I inhibitor). In contrast, the NAD+/NADH content of the enzyme was not affected during the inactivation process with 5 and 6, and their mechanism of inactivation was further investigated. Addition of enzyme-sequestered water on the S-allenylthio group of 5 or S-propynylthio group of 6 within the active site should lead to the formation of the corresponding thioester 7. This acylating-intermediate agent could then undergo nucleophilic attack by a protein residue, leading to a type II mechanism-based inactivation. ElectroSpray mass spectra analysis of the inactivated protein by 5 supports this mechanistic proposal. Further studies (MALDI-TOF and ESI/MSn experiments) of the trypsin and endo-Lys-C proteolytic cleavage of the fragments of inactivated AdoHcy hydrolase by 5 were carried out for localization of the labeling. The antiviral activity of 4, 5, and 6 against a large variety of viruses was determined. Significant activity (EC50: 1.9 μM) was noted with 5 against vaccinia virus. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm0108350 |