Design, Synthesis, and Structure−Activity Relationships of a Series of 3-[2-(1-Benzylpiperidin-4-yl)ethylamino]pyridazine Derivatives as Acetylcholinesterase Inhibitors

Starting from the 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-6-phenylpyridazine 1, we performed the design, the synthesis, and the structure−activity relationships of a series of pyridazine analogues acting as AChE inhibitors. Structural modifications were achieved on four different parts of compound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2001-08, Vol.44 (17), p.2707-2718
Hauptverfasser: Contreras, Jean-Marie, Parrot, Isabelle, Sippl, Wolfgang, Rival, Yveline M, Wermuth, Camille G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Starting from the 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-6-phenylpyridazine 1, we performed the design, the synthesis, and the structure−activity relationships of a series of pyridazine analogues acting as AChE inhibitors. Structural modifications were achieved on four different parts of compound 1 and led to the following observations:  (i) introduction of a lipophilic environment in the C-5 position of the pyridazine ring is favorable for the AChE-inhibitory activity and the AChE/BuChE selectivity; (ii) substitution and various replacements of the C-6 phenyl group are possible and led to equivalent or slightly more active derivatives; (iii) isosteric replacements or modifications of the benzylpiperidine moiety are detrimental to the activity. Among all derivatives prepared, the indenopyridazine derivative 4g was found to be the more potent inhibitor with an IC50 of 10 nM on electric eel AChE. Compared to compound 1, this represents a 12-fold increase in potency. Moreover, 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-5-methyl-6-phenylpyridazine 4c, which showed an IC50 of 21 nM, is 100-times more selective for human AChE (human BuChE/AChE ratio of 24) than the reference compound tacrine.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm001088u