Enzyme-retting of flax and characterization of processed fibers
Enzyme-retting formulations consisting of Viscozyme L, a pectinase-rich commercial enzyme product, and ethylenediaminetetraacetic acid (EDTA) were tested on Ariane fiber flax and North Dakota seed flax straw residue. Flax stems that were crimped to disrupt the outer layers were soaked with various p...
Gespeichert in:
Veröffentlicht in: | Journal of biotechnology 2001-08, Vol.89 (2), p.193-203 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enzyme-retting formulations consisting of Viscozyme L, a pectinase-rich commercial enzyme product, and ethylenediaminetetraacetic acid (EDTA) were tested on Ariane fiber flax and North Dakota seed flax straw residue. Flax stems that were crimped to disrupt the outer layers were soaked with various proportions of Viscozyme-EDTA solutions, retted, and then cleaned and cottonized with commercial processing equipment. Fiber properties were determined and crude test yarns were made of raw and Shirley cleaned flax fibers and cotton in various blend levels. Cleaned fibers were obtained from both seed and fiber flax types, but with variations due to treatment. Retting formulations produced fibers having different properties, with enzyme levels of 0.3% (v/v as supplied) giving finer but weaker fibers than 0.05% regardless of EDTA level. Experimental yarns of blended flax and cotton fibers varied in mass coefficient of variation, single end strength, and nep imperfections due to sample and formulation. With cost and fiber and yarn quality as criteria, results established a range in the amounts of components comprising retting formulations as a basis for further studies to optimize enzyme-retting formulations for flax. Under conditions examined herein, Viscozyme L at 0.3% (v/v) plus 25 mM EDTA produced the best test yarns and, therefore, established a base for future studies to develop commercial-grade, short staple flax fibers for use in textiles. |
---|---|
ISSN: | 0168-1656 1873-4863 |
DOI: | 10.1016/S0168-1656(01)00298-X |