Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly (15)N-labeled helical membrane proteins in oriented lipid bilayers

Uniformly (15)N-labeled samples of membrane proteins with helices aligned parallel to the membrane surface give two-dimensional PISEMA spectra that are highly overlapped due to limited dispersions of (1)H-(15)N dipolar coupling and (15)N chemical shift frequencies. However, resolution is greatly imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2000-05, Vol.144 (1), p.156-161
Hauptverfasser: Marassi, F M, Ma, C, Gesell, J J, Opella, S J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uniformly (15)N-labeled samples of membrane proteins with helices aligned parallel to the membrane surface give two-dimensional PISEMA spectra that are highly overlapped due to limited dispersions of (1)H-(15)N dipolar coupling and (15)N chemical shift frequencies. However, resolution is greatly improved in three-dimensional (1)H chemical shift/(1)H-(15)N dipolar coupling/(15)N chemical shift correlation spectra. The 23-residue antibiotic peptide magainin and a 54-residue polypeptide corresponding to the cytoplasmic domain of the HIV-1 accessory protein Vpu are used as examples. Both polypeptides consist almost entirely of alpha-helices, with their axes aligned parallel to the membrane surface. The measurement of three orientationally dependent frequencies for Val17 of magainin enabled the three-dimensional orientation of this helical peptide to be determined in the lipid bilayer.
ISSN:1090-7807
DOI:10.1006/jmre.2000.2036