Mismatch repair detection (MRD) : high-throughput scanning for DNA variations
Although there are several methods for genotyping previously identified single nucleotide polymorphisms (SNPs), there is a paucity of approaches for high-throughput scanning for unknown variations. Mismatch repair detection (MRD) utilizes a bacterial mismatch repair system in vivo to detect sequence...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2001-08, Vol.10 (16), p.1657-1664 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although there are several methods for genotyping previously identified single nucleotide polymorphisms (SNPs), there is a paucity of approaches for high-throughput scanning for unknown variations. Mismatch repair detection (MRD) utilizes a bacterial mismatch repair system in vivo to detect sequence variants in human DNA samples. We describe modifications in MRD that allow a high degree of parallel processing, and use this modified version to accurately scan for variations in 35 different human DNA fragments simultaneously. MRD's potential for high-throughput scanning can be used to identify new SNPs and to comprehensively compare sequences between patients and controls for identifying disease susceptibility alleles. |
---|---|
ISSN: | 0964-6906 1460-2083 1460-2083 |
DOI: | 10.1093/hmg/10.16.1657 |