Spontaneous Arousals during quiet sleep in piglets : A visual and wavelet-based analysis

The objectives of the study were to characterize spontaneous arousals during NREM sleep in piglets and to compare two methods of identifying these events: a "visual" technique using spectral analysis and an automated technique using wavelets. Our goal was to understand the benefits and lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sleep (New York, N.Y.) N.Y.), 2001-08, Vol.24 (5), p.499-513
Hauptverfasser: BUSHA, Brett, LEITER, J. C, CURRAN, Aidan K, AHIUA LI, NATTIE, Eugene E, DARNALL, Robert A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objectives of the study were to characterize spontaneous arousals during NREM sleep in piglets and to compare two methods of identifying these events: a "visual" technique using spectral analysis and an automated technique using wavelets. Our goal was to understand the benefits and limits of these methods when applied to sleep in human infants. Arousals were identified by evaluating rapid changes in EEG low frequency activity, blood pressure (BP), and heart rate (HR). A cortical arousal was defined as a rapid decrease in EEG low frequency activity. An autonomic arousal was defined by a transient increase in heart rate or a transient change in mean arterial BP (MAP). Laboratory study in sleeping and awake piglets. Five 1-2 week old piglets. Chronically instrumented with a femoral arterial line, EEG, EOG, EMG electrodes, and a micro-dialysis probe with its tip located in the rostral ventral medulla. Artificial CSF (aCSF) was dialyzed into the RVM throughout the experiments Measurements: For the visual analysis, the average delta power (0.5-4 Hz) for each 5-second epoch was determined using spectral analysis. MAP and HR were analyzed in 1-second bins. Video images were analyzed for body movements and eye openings. Transient changes in blood pressure, HR, and delta power were then visually identified. For the wavelet analysis, a quantitative, automated technique with a defined "wakefulness threshold" was used to identify rapid decreases in EEG low frequency activity and the rate of change of MAP. Using the visual method, 117 episodes associated with stereotypical hemodynamic, EEG, and behavioral changes (startle) were identified. Seventy five events occurred in isolation or were first in a series of "multiple" events, 41 "multiple" events were defined as events occurring
ISSN:0161-8105
1550-9109
DOI:10.1093/sleep/24.5.499