High-Throughput Peptide Identification from Protein Digests Using Data-Dependent Multiplexed Tandem FTICR Mass Spectrometry Coupled with Capillary Liquid Chromatography

Tandem mass spectrometry (MS/MS) plays an important role in the unambiguous identification and structural elucidation of biomolecules. In contrast to conventional MS/MS approaches for protein identification where an individual polypeptide is sequentially selected and dissociated, a multiplexed-MS/MS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2001-07, Vol.73 (14), p.3312-3322
Hauptverfasser: Li, Lingjun, Masselon, Christophe D, Anderson, Gordon A, Paša-Tolić, Ljiljana, Lee, Sang-Won, Shen, Yufeng, Zhao, Rui, Lipton, Mary S, Conrads, Thomas P, Tolić, Nikola, Smith, Richard D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tandem mass spectrometry (MS/MS) plays an important role in the unambiguous identification and structural elucidation of biomolecules. In contrast to conventional MS/MS approaches for protein identification where an individual polypeptide is sequentially selected and dissociated, a multiplexed-MS/MS approach increases throughput by selecting several peptides for simultaneous dissociation using either infrared multiphoton dissociation (IRMPD) or multiple frequency sustained off-resonance irradiation (SORI) collisionally induced dissociation (CID). The high mass measurement accuracy and resolution of FTICR combined with knowledge of peptide dissociation pathways allows the fragments arising from several different parent ions to be assigned. Herein we report the application of multiplexed-MS/MS coupled with on-line separations for the identification of peptides present in complex mixtures (i.e., whole cell lysate digests). Software was developed to enable “on-the-fly” data-dependent peak selection of a subset of polypeptides from each FTICR MS acquisition. In the subsequent MS/MS acquisitions, several coeluting peptides were fragmented simultaneously using either IRMPD or SORI-CID techniques. The utility of this approach has been demonstrated using a bovine serum albumin tryptic digest separated by capillary LC where multiple peptides were readily identified in single MS/MS acquisitions. We also present initial results from multiplexed-MS/MS analysis of a D. radiodurans whole cell digest to illustrate the utility of this approach for high-throughput analysis of a bacterial proteome.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac010192w