Shape and Dynamics of Thermoregulating Honey Bee Clusters
A model of simple algorithmic “agents” acting in a discrete temperature field is used to investigate the movement of individuals in thermoregulating honey bee (Apis mellifera) clusters. Thermoregulation in over-wintering clusters is thought to be the result of individual bees attempting to regulate...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2000-05, Vol.204 (1), p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A model of simple algorithmic “agents” acting in a discrete temperature field is used to investigate the movement of individuals in thermoregulating honey bee (Apis mellifera) clusters. Thermoregulation in over-wintering clusters is thought to be the result of individual bees attempting to regulate their own body temperatures. At ambient temperatures above 0°C, a clustering bee will move relative to its neighbours so as to put its local temperature within some ideal range. The proposed model incorporates this behaviour into an algorithm for bee agents moving on a two-dimensional lattice. Heat transport on the lattice is modelled by a discrete diffusion process. Computer simulation of this model demonstrates qualitative behaviour which agrees with that of real honey bee clusters. In particular, we observe the formation of both disc- and ring-like cluster shapes. The simulation also suggests that at lower ambient temperatures, clusters do not always have a stable shape but can oscillate between insulating rings of different sizes and densities. |
---|---|
ISSN: | 0022-5193 1095-8541 |
DOI: | 10.1006/jtbi.1999.1063 |