CD34+/CD105+ cells are enriched in primitive circulating progenitors residing in the G0 phase of the cell cycle and contain all bone marrow and cord blood CD34+/CD38low/− precursors

A subset of circulating CD34+ cells was found to express CD105 antigen. Sorting experiments showed that most granulocyte–macrophage colony‐forming units (GM‐CFU) and burst‐forming units — erythroid (BFU‐E) were retained in the CD34+/CD105− fraction, whereas rare GM‐CFU/BFU‐E were generated from CD34...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of haematology 2000-03, Vol.108 (3), p.610-620
Hauptverfasser: Pierelli, Luca, Scambia, Giovanni, Bonanno, Giuseppina, Rutella, Sergio, Puggioni, Pierluigi, Battaglia, Alessandra, Mozzetti, Simona, Marone, Maria, Menichella, Giacomo, Rumi, Carlo, Mancuso, Salvatore, Leone, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A subset of circulating CD34+ cells was found to express CD105 antigen. Sorting experiments showed that most granulocyte–macrophage colony‐forming units (GM‐CFU) and burst‐forming units — erythroid (BFU‐E) were retained in the CD34+/CD105− fraction, whereas rare GM‐CFU/BFU‐E were generated from CD34+/CD105+ cells. Megakaryocytic aggregates were entirely retained in the CD34+/CD105+ fraction. Neutralizing doses of an anti‐TGF‐β1 antibody demonstrated CD34+/CD105+ cells capable of colony‐forming activity without any significant effect on CD34+/CD105− cells. Cloning of secondary colonies revealed that CD34+/CD105+ cells had a significantly higher secondary cloning efficiency than CD34+/CD105− cells. CD34+/CD105+ cells had a significantly higher long‐term culture‐initiating cell (LTC‐IC) frequency than CD34+/CD105− cells. Kinetic analysis showed that 75% of CD34+/CD105+ cells consisted of DNA 2n G0Ki‐67− cells whereas 82% of CD34+/CD105− were DNA 2n G1Ki‐67+ cells, and this latter subset showed a RNA content consistently higher than CD34+/CD105+ cells. CD34+/CD105+ progenitors were CD25+, whereas CD34+/CD105− contained a small CD25+ subset. Three‐colour analysis of bone marrow and cord blood CD34+ cells demonstrated that all the CD34+/CD38low/− primitive precursors were contained in CD34+/CD105+ cells. Extensive characterization of these CD105+ precursors indicated that they have biological properties associated with primitive haematopoietic precursors.
ISSN:0007-1048
1365-2141
DOI:10.1046/j.1365-2141.2000.01869.x