Ab Initio Study of the Atmospheric Oxidation of CS2

The reactions of OH with CS2, OCS, and 3SO and of 3O2 with CS2, SCSOH, and HOSO have been studied by optimizing minima and transition states with B3LYP/6-31+G(d) and carrying out higher-level ab initio calculations on fixed geometries. The combined calculations provide valuable insight into the mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2001-03, Vol.123 (10), p.2344-2353
Hauptverfasser: McKee, Michael L, Wine, P. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reactions of OH with CS2, OCS, and 3SO and of 3O2 with CS2, SCSOH, and HOSO have been studied by optimizing minima and transition states with B3LYP/6-31+G(d) and carrying out higher-level ab initio calculations on fixed geometries. The combined calculations provide valuable insight into the mechanism for the atmospheric oxidation of CS2. The initial step is the formation of the SCSOH complex (1) which readily adds molecular oxygen to form the SC(OO)SOH complex (8). A key step is the oxygen atom transfer to the sulfur bearing the hydroxyl group which leads directly to OCS plus HOSO. The HOSO + 3O2 reaction has a near zero calculated activation barrier so generation of O2H + SO2 should proceed readily in the atmosphere.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja003421p