Analysis of high intracellular [Na +]-induced release of [ 3H]noradrenaline in rat hippocampal slices

Our aim was to investigate the mechanisms involved in the high intracellular sodium-induced transmitter release in the CNS through the characterisation of the veratridine-evoked (40 μM) noradrenaline release from rat hippocampal slices. The response to veratridine was completely inhibited by tetrodo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2001-01, Vol.104 (3), p.761-768
Hauptverfasser: Gerevich, Z, Tretter, L, Adam-Vizi, V, Baranyi, M, Kiss, J.P, Zelles, T, Vizi, E.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our aim was to investigate the mechanisms involved in the high intracellular sodium-induced transmitter release in the CNS through the characterisation of the veratridine-evoked (40 μM) noradrenaline release from rat hippocampal slices. The response to veratridine was completely inhibited by tetrodotoxin (1 μM), indicating that the effect is due to the activation of sodium channels. Omission of Ca 2+ from the superfusion fluid inhibited the veratridine-evoked release by 72%, showing that the majority of release results from external Ca 2+-dependent exocytosis. The residual Ca 2+-independent release was not blocked by the intracellular Ca 2+ chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N, N-tetraacetic acid acetoxymethyl ester (100 μM) suggesting that intracellular Ca 2+ stores are not involved in this component of veratridine effect. The noradrenaline uptake blockers, desipramine (10 μM) and nisoxetine (10 μM), inhibited the external Ca 2+-independent release by 50 and 46%, respectively, indicating that the release partly originates from the reversal of transporters (carrier-mediated release). In contrast to uptake blockers, lowering the temperature, another possibility to inhibit transporter function, completely inhibited the effect of veratridine in the absence of Ca 2+. Further experiments revealed that low temperature (20 and 12°C) reduces the veratridine-induced increase of intracellular sodium concentration ([Na +] i) in rat cortical synaptosomes (68 and 78% inhibition, respectively). The clinical relevance of our data is that during ischemia a massive release of transmitters occurs mainly due to the elevation of [Na +] i, which contributes to the development of ischemic brain injury. Our results show that low temperature may be a better therapeutic approach to the treatment of ischemia because it has a dual action on this process. Firstly, it inhibits the function of uptake transporters and hence reduces the carrier-mediated outflow of transmitters. Secondly, it inhibits the sodium influx and therefore prevents the unwanted elevation of [Na +] i. Our data also suggest that veratridine stimulation can be a suitable model for ischemic conditions.
ISSN:0306-4522
1873-7544
DOI:10.1016/S0306-4522(01)00102-6