Histone H3 Phosphorylation Is Coupled to Poly-(ADP-Ribosylation) during Reactive Oxygen Species-Induced Cell Death in Renal Proximal Tubular Epithelial Cells

Although the cellular response to chemical-induced stress is relatively well characterized, particularly the response to DNA damage, factors that govern the outcome of the stress response (cell survival or cell death) are less clearly defined. In this context, the mitogen-activated protein kinase (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 2001-08, Vol.60 (2), p.394-402
Hauptverfasser: Tikoo, K, Lau, S S, Monks, T J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the cellular response to chemical-induced stress is relatively well characterized, particularly the response to DNA damage, factors that govern the outcome of the stress response (cell survival or cell death) are less clearly defined. In this context, the mitogen-activated protein kinase (MAPK) family responds to a variety of physical and chemical stresses. The activation of MAPKs, especially the extracellular-regulated protein kinase subfamily, seems to play a causal role in death of renal proximal tubular epithelial cells (LLC-PK1) induced by reactive oxygen species (ROS). In this study, we show that extracellular signal receptor-activated kinase (ERK) activation may be coupled with LLC-PK1 cell death via changes in chromatin structure, which is mediated by increases in the phosphorylation of histone H3 (a post-translational modification required for both chromosome condensation and segregation during mitosis) and premature chromatin/chromosomal condensation, leading to cell death. In support of this view, 2,3,5- tris -(glutathion- S -yl)hydroquinone (TGHQ)-induced phosphorylation of histone H3 is accompanied by increases in chromatin condensation, as observed with the use of 4,6-diamidino-2-phenylindole-fluorescent staining, and by decreases in the sensitivity of chromatin to digestion by micrococcal nuclease. Changes in chromatin structure precede cell death. TGHQ-induced histone H3 phosphorylation and chromatin condensation are inhibited by PD098059, which selectively inhibits MAPK kinase, an upstream regulator of ERKs. Moreover, histone phosphorylation is modulated by poly(ADP-)ribosylation. Thus, the inhibition of poly(ADP-ribose)polymerase with 3-aminobenzamide prevents histone H3 phosphorylation and increases cell survival, suggesting that ADP-ribosylation and histone H3 phosphorylation are coupled in this model of ROS-induced DNA damage and cell death. The coupling of histone phosphorylation with ribosylation has not been previously demonstrated.
ISSN:0026-895X
1521-0111
DOI:10.1124/mol.60.2.394