Reduced [3H]IP3 binding but unchanged IP3 receptor levels in the rat hippocampus CA1 region following transient global ischemia and tolerance induction

Changes in inositol (1,4,5)-trisphosphate (IP3) binding properties and the protein level of the IP3 receptor have been reported in different pathological conditions in the brain, e.g. cerebral ischemia, Alzheimer's disease, and Huntingtons disease. We used the 4-vessel occlusion model in rat br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemistry international 2000-04, Vol.36 (4-5), p.379-388
Hauptverfasser: Dahl, C, Haug, L S, Spilsberg, B, Johansen, J, Ostvold, A C, Diemer, N H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Changes in inositol (1,4,5)-trisphosphate (IP3) binding properties and the protein level of the IP3 receptor have been reported in different pathological conditions in the brain, e.g. cerebral ischemia, Alzheimer's disease, and Huntingtons disease. We used the 4-vessel occlusion model in rat brain to investigate the effect of transient ischemia insults on the IP3 receptor mRNA level, the IP3 receptor protein level and [3H]IP3 binding. Recirculation periods were limited (1-72 h) to avoid the development of delayed neuronal death. We found that the IP3 receptor mRNA levels were decreased after damage-inducing ischemia (9 min) in the hippocampus CA1 and CA3 regions. The mRNA levels were unaltered after tolerance-inducing ischemia (3 min). However, [3H]IP3 binding was significantly reduced after both damage- and tolerance-inducing ischemia in the hippocampus CA1 region. Furthermore, all investigated brain areas showed a decreased [3H]IP3 binding when tolerance-inducing ischemia was followed by a second ischemic insult (3 + 8.5 min ischemia). The IP3 receptor protein levels remained constant in all investigated brain areas. These results indicate that a reduced [3H]IP3 binding capability in the particularly vulnerable areas occurs as an early consequence of cerebral ischemia, before IP3 receptor protein levels are reduced in these areas. Structural or conformational changes altering IP3 binding may be of necessity on the pathway leading to down-regulation of IP3 receptor protein levels, as observed by others.
ISSN:0197-0186
DOI:10.1016/s0197-0186(99)00129-1