Effect of somatostatin on cholecystokinin-induced amylase release in rat pancreatic acini
The effect of somatostatin on cholecystokinin-induced amylase release was investigated in isolated rat pancreatic acini. Acini were isolated by enzymatic digestion and incubated in a HEPES buffered Ringer's solution with testing reagents for 30 minutes at 37 degrees C. The activity of released...
Gespeichert in:
Veröffentlicht in: | Pancreas 2001-07, Vol.23 (1), p.102-108 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of somatostatin on cholecystokinin-induced amylase release was investigated in isolated rat pancreatic acini. Acini were isolated by enzymatic digestion and incubated in a HEPES buffered Ringer's solution with testing reagents for 30 minutes at 37 degrees C. The activity of released amylase, cAMP, and inositol phosphate formation were measured. Intracellular calcium concentration ([Ca2+]i) was also checked. Somatostatin 14 and octreotide, a somatostatin analog, inhibited CCK-stimulated amylase release in a concentration-dependent manner. The inhibitory effect of octreotide on CCK-induced amylase release was not shown when the acini were treated with 8-Br-cAMP, irrespective of the presence of IBMX. Forskolin potentiated CCK-induced amylase release and this effect was blocked by octreotide treatment; although CCK-8 (3 x 10(-11) M) failed to stimulate cAMP formation, octreotide significantly inhibited basal cAMP formation in the acini. The increase of [Ca2+]i in response to CCK was inhibited by octreotide. However, CCK-induced inositol phosphate formation was not changed by 10(-9) M octreotide. Octreotide had no effect on CCK-stimulated tyrosine phosphorylation, and tyrosine phosphatase inhibitors (NaF and Na2WO4) did not influence the effect of octreotide on CCK-induced amylase release. From these results, we conclude that octreotide inhibits CCK-induced amylase release by inhibiting basal cAMP formation and decreasing the [Ca2+]i stimulated by CCK. |
---|---|
ISSN: | 0885-3177 1536-4828 |
DOI: | 10.1097/00006676-200107000-00015 |