Detection of Protein Oxidation in Rat-1 Fibroblasts by Fluorescently Labeled Tyramine
Oxidative damage to proteins has been postulated as a major cause of various degenerative diseases including the loss of functional capacity during aging. A prominent target for oxidation by reactive oxygen species (ROS) is the tyrosine residue. Here we present a highly sensitive method for the dete...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2001-07, Vol.40 (26), p.7783-7788 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oxidative damage to proteins has been postulated as a major cause of various degenerative diseases including the loss of functional capacity during aging. A prominent target for oxidation by reactive oxygen species (ROS) is the tyrosine residue. Here we present a highly sensitive method for the detection of tyrosyl radical formation in cells. The method is based on the fluorescein-labeled tyrosine analogue, tyramine, which upon oxidation may couple to proteins carrying a tyrosyl radical. Coupling of the probe (denoted TyrFluo) to standard proteins could be induced by generating ROS with horseradish peroxidase/hydrogen peroxide, SIN-1 or with peroxides (cumene or hydrogen peroxide) in combination with a transition metal. TyrFluo added to rat-1 fibroblasts remained outside the cell, whereas the acetylated form (acetylTyrFluo) was membrane-permeable and accumulated in the cell. Exposure of the cells to oxidative stress in the presence of either TyrFluo or acetylTyrFluo gave a cellular labeling characteristic for each probe. Western blot analysis confirmed that each probe labeled a specific set of proteins. This new method for the detection of ROS-induced oxidation of proteins may mimic the tendency of oxidized proteins to form dityrosine bonds. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi002795s |