Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121)

The two most abundant secreted isoforms of vascular endothelial growth factor A (VEGF(165) and VEGF(121)) are formed as a result of differential splicing of the VEGF-A gene. VEGF(165) and VEGF(121) share similar affinities at the isolated VEGF receptor (VEGFR)-2 but have been previously demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-07, Vol.276 (27), p.25520-25531
Hauptverfasser: Whitaker, G B, Limberg, B J, Rosenbaum, J S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The two most abundant secreted isoforms of vascular endothelial growth factor A (VEGF(165) and VEGF(121)) are formed as a result of differential splicing of the VEGF-A gene. VEGF(165) and VEGF(121) share similar affinities at the isolated VEGF receptor (VEGFR)-2 but have been previously demonstrated to have differential ability to activate VEGFR-2-mediated effects on endothelial cells. Herein we investigate whether the recently described VEGF(165) isoform-specific receptor neuropilin-1 (Npn-1) is responsible for the difference in potency observed for these ligands. We demonstrate that although VEGFR-2 and Npn-1 form a complex, this complex does not result in an increase in VEGF(165) binding affinity. Therefore, the differential activity of VEGF(165) and VEGF(121) cannot be explained by a differential binding affinity for the complex. Using an antagonist that competes for VEGF(165) binding at the VEGFR-2.Npn-1 complex, we observe specific antagonism of VEGF(165)-meditated phosphorylation of VEGFR-2 without affecting the VEGF(121) response. These data indicate that the formation of the complex is responsible for the increased potency of VEGF(165) versus VEGF(121). Taken together, these data suggest a receptor-clustering role for Npn-1, as opposed to Npn-1 behaving as an affinity-converting subunit.
ISSN:0021-9258
DOI:10.1074/jbc.M102315200