New, Optically Active Phosphine Oxazoline (JM-Phos) Ligands:  Syntheses and Applications in Allylation Reactions

Three different syntheses of the phosphine oxazoline systems 1 are presented. Two of these approaches are divergent routes designed to involve an advanced intermediate that can be transformed into several different end-products. The third is a shorter route specifically designed to facilitate prepar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2001-01, Vol.66 (1), p.206-215
Hauptverfasser: Hou, Duen-Ren, Reibenspies, Joseph H, Burgess, Kevin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three different syntheses of the phosphine oxazoline systems 1 are presented. Two of these approaches are divergent routes designed to involve an advanced intermediate that can be transformed into several different end-products. The third is a shorter route specifically designed to facilitate preparations of these systems on a larger scale using minimal functional group protection. Overall, eight different phosphine oxazolines were prepared. These were screened in several palladium-mediated allylation reactions. They proved to be most useful for asymmetric alkylation of 3-acetoxy-1,3-diphenylpropene and less suitable/effective for the more challenging substrates (a pentenyl derivative and a cyclohexenyl system). X-ray crystallographic analysis of the complex [(η3-PhCHCHCHPh)Pd(1a)][PF6] led to the conclusion that the origins of asymmetric induction in these systems might be indirectly attributed to interaction of the oxazoline-phenyl substituent with the palladium and with an allyl-phenyl substituent. Finally, data is presented for allylation of a silylenolate of an N-acyl oxazolidinone; excellent enantioselectivities and yields were obtained.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo001333h