The Antianginal Drug Trimetazidine Shifts Cardiac Energy Metabolism From Fatty Acid Oxidation to Glucose Oxidation by Inhibiting Mitochondrial Long-Chain 3-Ketoacyl Coenzyme A Thiolase

ABSTRACTTrimetazidine is a clinically effective antianginal agent that has no negative inotropic or vasodilator properties. Although it is thought to have direct cytoprotective actions on the myocardium, the mechanism(s) by which this occurs is as yet undefined. In this study, we determined what eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2000-03, Vol.86 (5), p.580-588
Hauptverfasser: Kantor, Paul F, Lucien, Arnaud, Kozak, Raymond, Lopaschuk, Gary D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACTTrimetazidine is a clinically effective antianginal agent that has no negative inotropic or vasodilator properties. Although it is thought to have direct cytoprotective actions on the myocardium, the mechanism(s) by which this occurs is as yet undefined. In this study, we determined what effects trimetazidine has on both fatty acid and glucose metabolism in isolated working rat hearts and on the activities of various enzymes involved in fatty acid oxidation. Hearts were perfused with Krebs-Henseleit solution containing 100 μU/mL insulin, 3% albumin, 5 mmol/L glucose, and fatty acids of different chain lengths. Both glucose and fatty acids were appropriately radiolabeled with either H or C for measurement of glycolysis, glucose oxidation, and fatty acid oxidation. Trimetazidine had no effect on myocardial oxygen consumption or cardiac work under any aerobic perfusion condition used. In hearts perfused with 5 mmol/L glucose and 0.4 mmol/L palmitate, trimetazidine decreased the rate of palmitate oxidation from 488±24 to 408±15 nmol · g dry weight · minute (P
ISSN:0009-7330
1524-4571
DOI:10.1161/01.res.86.5.580