The diversity of retrotransposons in the yeast Cryptococcus neoformans

We have undertaken an analysis of the retrotransposons in the medically important basidiomycetous fungus Cryptococcus neoformans. Using the data generated by a C. neoformans genome sequencing project at the Stanford Genome Technology Center, 15 distinct families of LTR retrotransposons and several f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Yeast (Chichester, England) England), 2001-06, Vol.18 (9), p.865-880
Hauptverfasser: Goodwin, Timothy J. D., Poulter, Russell T. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have undertaken an analysis of the retrotransposons in the medically important basidiomycetous fungus Cryptococcus neoformans. Using the data generated by a C. neoformans genome sequencing project at the Stanford Genome Technology Center, 15 distinct families of LTR retrotransposons and several families of non‐LTR retrotransposons were identified. Members of at least seven families have transposed recently and are probably still active. For several families, only partial elements could be identified and these are quite diverse in sequence, suggesting that they are ancient components of the C. neoformans genome. Most C. neoformans elements are not closely related to previously identified fungal retrotransposons, suggesting that the diversity of fungal retrotransposons has been only sparsely sampled to date. C. neoformans has fewer distinct retrotransposon families than Candida albicans (37 or more), in particular fewer families represented solely by ancient and inactive elements, but it has considerably more families than either Saccharomyces cerevisiae (five) or Schizosaccharomyces pombe (two). The findings suggest that elimination of retrotransposons is faster in C. neoformans than in C. albicans, but perhaps not as rapid as in S. cerevisiae or Sz. pombe. The identification of the retrotransposons of C. neoformans should assist in the molecular characterization of this important pathogen, and also further our understanding of the role played by retroelements in genome evolution. Copyright © 2001 John Wiley & Sons, Ltd.
ISSN:0749-503X
1097-0061
DOI:10.1002/yea.733