Connexin45 Interacts with Zonula Occludens-1 and Connexin43 in Osteoblastic Cells
The relative expression of connexin43 and connexin45 modulates gap junctional communication and production of bone matrix proteins in osteoblastic cells. It is likely that changes in gap junction permeability are determined by the interaction between these two proteins. Cx43 interacts with ZO-1, whi...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2001-06, Vol.276 (25), p.23051-23055 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The relative expression of connexin43 and connexin45 modulates gap junctional communication and production of bone matrix proteins in osteoblastic cells. It is likely that changes in gap junction permeability are determined by the interaction between these two proteins. Cx43 interacts with ZO-1, which may be involved in trafficking of Cx43 or facilitating interactions between Cx43 and other proteins. In this study we sought to identify proteins that associate with Cx45 by coprecipitation in non-denaturing conditions. Cx45 was isolated with a 220-kDa protein that we identified as ZO-1. Under the same conditions, Cx43 also was isolated with anti-Cx45 antiserum from Cx45-transfected ROS cells (ROS/Cx45 cells). Cx43 antiserum could also coprecipitate ZO-1 in the transfected and untransfected ROS cells. Double label immunofluorescence studies showed that ZO-1, Cx43, and Cx45 colocalized at appositional membranes in ROS/Cx45 cells suggesting that all three proteins are normally associated in the cells. Additionally, we found that in vitro translated ZO-1 binds to the carboxyl-terminal of Cx45 indicating that there is a direct interaction between the carboxyl-terminal of Cx45 and ZO-1. These studies demonstrate that ZO-1 interacts with Cx45 as well as with Cx43, and suggest that the interaction of connexins with ZO-1 may play a role in regulating the composition of the gap junction and may modulate connexin-connexin interactions. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M100303200 |