BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer's disease therapeutics
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major components of plaque, beta-amyloid peptides (Abetas), are produced from amyloid precursor protein (APP) by the activity of beta- and gamm...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2001-06, Vol.10 (12), p.1317-1324 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major components of plaque, beta-amyloid peptides (Abetas), are produced from amyloid precursor protein (APP) by the activity of beta- and gamma-secretases. beta-secretase activity cleaves APP to define the N-terminus of the Abeta1-x peptides and, therefore, has been a long- sought therapeutic target for treatment of AD. The gene encoding a beta-secretase for beta-site APP cleaving enzyme (BACE) was identified recently. However, it was not known whether BACE was the primary beta-secretase in mammalian brain nor whether inhibition of beta-secretase might have effects in mammals that would preclude its utility as a therapeutic target. In the work described herein, we generated two lines of BACE knockout mice and characterized them for pathology, beta-secretase activity and Abeta production. These mice appeared to develop normally and showed no consistent phenotypic differences from their wild-type littermates, including overall normal tissue morphology and brain histochemistry, normal blood and urine chemistries, normal blood-cell composition, and no overt behavioral and neuromuscular effects. Brain and primary cortical cultures from BACE knockout mice showed no detectable beta-secretase activity, and primary cortical cultures from BACE knockout mice produced much less Abeta from APP. The findings that BACE is the primary beta-secretase activity in brain and that loss of beta-secretase activity produces no profound phenotypic defects with a concomitant reduction in beta-amyloid peptide clearly indicate that BACE is an excellent therapeutic target for treatment of AD. |
---|---|
ISSN: | 0964-6906 1460-2083 1460-2083 |
DOI: | 10.1093/hmg/10.12.1317 |