c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover

The c-myc proto-oncogene encodes a short-lived transcription factor that plays an important role in cell cycle regulation, differentiation and apoptosis. c-myc is often rearranged in tumors resulting in deregulated expression. In addition, mutations in the coding region of c-myc are frequently found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2000-03, Vol.95 (6), p.2104-2110
Hauptverfasser: Bahram, Fuad, von der Lehr, Natalie, Cetinkaya, Cihan, Larsson, Lars-Gunnar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The c-myc proto-oncogene encodes a short-lived transcription factor that plays an important role in cell cycle regulation, differentiation and apoptosis. c-myc is often rearranged in tumors resulting in deregulated expression. In addition, mutations in the coding region of c-myc are frequently found in human lymphomas, a hot spot being the Thr58 phosphorylation site, a mutation shown to enhance the transforming capacity of c-Myc. It is, however, still unclear in what way this mutation affects c-Myc activity. Our results show that proteasome-mediated turnover of c-Myc is substantially impaired in Burkitt's lymphoma cells with mutated Thr58 or other mutations that abolish Thr58 phosphorylation, whereas endogenous or ectopically expressed wild type c-Myc proteins turn over at normal rates in these cells. Myc Thr58 mutants expressed ectopically in other cell types also exhibit reduced proteasome-mediated degradation, which correlates with a substantial decrease in their ubiquitination. These results suggest that ubiquitin/proteasome-mediated degradation of c-Myc is triggered by Thr58 phosphorylation revealing a new important level of control of c-Myc activity. Mutation of Thr58 in lymphoma thus escapes this regulation resulting in accumulation of c-Myc protein, likely as part of the tumor progression.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V95.6.2104