Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo
The development and structural plasticity of dendritic arbors are governed by several factors, including synaptic activity, neurotrophins and other growth-regulating molecules. The signal transduction pathways leading to dendritic structural changes are unknown, but likely include cytoskeleton regul...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2000-03, Vol.3 (3), p.217-225 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development and structural plasticity of dendritic arbors are governed by several factors, including synaptic activity, neurotrophins and other growth-regulating molecules. The signal transduction pathways leading to dendritic structural changes are unknown, but likely include cytoskeleton regulatory components. To test whether GTPases regulate dendritic arbor development, we collected time-lapse images of single optic tectal neurons in albino
Xenopus
tadpoles expressing dominant negative or constitutively active forms of Rac, Cdc42 or RhoA. Analysis of images collected at two-hour intervals over eight hours indicated that enhanced Rac activity selectively increased branch additions and retractions, as did Cdc42 to a lesser extent. Activation of endogenous RhoA decreased branch extension without affecting branch additions and retractions, whereas dominant-negative RhoA increased branch extension. Finally, we provide data suggesting that RhoA mediates the promotion of normal dendritic arbor development by NMDA receptor activation. |
---|---|
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/72920 |