Cancer Isoform of a Tumor-Associated Cell Surface NADH Oxidase (tNOX) Has Properties of a Prion

We have described a drug-responsive form of a cell surface NADH oxidase (hydroquinone oxidase) of cancer cells (tNOX) that exhibits unusual characteristics including resistance to proteases, resistance to cyanogen bromide digestion, and an ability to form amyloid filaments closely resembling those o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2001-06, Vol.40 (25), p.7351-7354
Hauptverfasser: Kelker, Matthew, Kim, Chinpal, Chueh, Pin-Ju, Guimont, Rodney, Morré, Dorothy M, Morré, D. James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have described a drug-responsive form of a cell surface NADH oxidase (hydroquinone oxidase) of cancer cells (tNOX) that exhibits unusual characteristics including resistance to proteases, resistance to cyanogen bromide digestion, and an ability to form amyloid filaments closely resembling those of spongiform encephalopathies and all of which are characteristics of PrPsc (PrPres), the presumed infective and proteinase K resistant particle of the scrapie prion. The tNOX protein from the HeLa cell surface copurified with authentic glyceraldehyde-3-phosphate dehydrogenase (muscle form) (GAPDH). Surprisingly, the tNOX-associated muscle GAPDH also was proteinase K resistant. In this paper, we show that combination of authentic rabbit muscle GAPDH with tNOX renders the GAPDH resistant to proteinase K digestion. This property, that of converting the normal form of a protein into a likeness of itself, is one of the defining characteristics of the group of proteins designated as prions.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi010596i