Substitution of leucine 28 with histidine in the Escherichia coli transcription factor FNR results in increased stability of the [4Fe-4S](2+) cluster to oxygen

To understand the role of the [4Fe-4S](2+) cluster in controlling the activity of the Escherichia coli transcription factor FNR (fumarate nitrate reduction) during changes in O(2) availability, we have characterized a mutant FNR protein containing a substitution of Leu-28 with His (FNR-L28H) which,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-03, Vol.275 (9), p.6234-6240
Hauptverfasser: Bates, D M, Popescu, C V, Khoroshilova, N, Vogt, K, Beinert, H, Münck, E, Kiley, P J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To understand the role of the [4Fe-4S](2+) cluster in controlling the activity of the Escherichia coli transcription factor FNR (fumarate nitrate reduction) during changes in O(2) availability, we have characterized a mutant FNR protein containing a substitution of Leu-28 with His (FNR-L28H) which, unlike its wild type (WT) counterpart, is functional under aerobic growth conditions. The His-28 substitution appears to stabilize the [4Fe-4S](2+) cluster of FNR-L28H in the presence of O(2) because air-exposed FNR-L28H did not undergo the rapid [4Fe-4S](2+) to [2Fe-2S](2+) cluster conversion or concomitant loss in site-specific DNA binding and dimerization, which are characteristic of WT-FNR under these conditions. This increased cluster stability was not a result of His-28 replacing the WT-FNR cluster ligands because substitution of any of these four Cys residues (cysteine 20, 23, 29, or 122) with Ser resulted in [4Fe-4S](2+) cluster-deficient preparations of FNR-L28H. The Mössbauer spectra of FNR-L28H indicated that the coordination environment of the [4Fe-4S](2+) cluster did not differ from that of WT-FNR. Whole cell Mössbauer spectroscopy showed that aerobically grown cells overexpressing FNR-L28H had levels of the FNR species containing the [4Fe-4S](2+) cluster similar to those of cells grown under anaerobic conditions. Thus, the increase in cluster stability is sufficient to allow accumulation of the [4Fe-4S](2+) cluster form of FNR-L28H under aerobic conditions and provides a reasonable explanation for why this mutant protein is functional under aerobic growth conditions. From these results, we present a model to explain how WT-FNR is normally inactivated under aerobic growth conditions.
ISSN:0021-9258
DOI:10.1074/jbc.275.9.6234