Extracellular Ca(2+) suppresses endotoxin-inducible tissue factor activation in monocytic THP-1 cells

Monocytic tissue factor (TF), an initiator of extrinsic blood coagulation, is often activated under various inflammatory conditions including endotoxemia. This activation could be a contributing factor to the manifestation of disseminated intravascular coagulation following septic shock. We herein d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell biochemistry and function 2000-03, Vol.18 (1), p.67-73
Hauptverfasser: Chu, A J, Fox, M J, Prasad, J K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monocytic tissue factor (TF), an initiator of extrinsic blood coagulation, is often activated under various inflammatory conditions including endotoxemia. This activation could be a contributing factor to the manifestation of disseminated intravascular coagulation following septic shock. We herein determine if extracellular Ca(2+) ([Ca(2+)](ex)) regulates bacterial endotoxin (LPS)-inducible monocytic TF activation. We have employed a model monocytic cell line (THP-1) to explore the mode of action of [Ca(2+)](ex) on the modulation of LPS-induced TF activation. TF activity was measured by a single stage clotting assay, while TF expression as well as LPS recognition and its receptor expression were studied in immunofluorescent approaches. LPS-induced TF activation was inversely correlated to [Ca(2+)](ex). Upon exposure of THP-1 cells to LPS (1.5 microg ml(-1)) for 6 h in the Hanks' medium without CaCl(2), TF was activated by nearly 10-fold. TF activation appreciably decreased with the increasing [Ca(2+)](ex). No more than 3.5-fold TF activation was detected at 5 mM [Ca(2+)](ex). Consistent with the significantly lower degree of TF activation, LPS-induced TF expression at 5 mM [Ca(2+)](ex) was 60 per cent less than that without [Ca(2+)](ex). FACScan analysis showed that LPS recognition was significantly blocked at 5 mM [Ca(2+)](ex) which however had no effect on the expression of CD14 and CD11b, the proposed major LPS receptors. Moreover, LPS binding in vitro was significantly inhibited by 5 mM CaCl(2). Our results demonstrate that [Ca(2+)](ex) blocked LPS recognition without affecting its receptor expression on THP-1 monocytes. This insensitivity to LPS thereby resulted in the depressed inducible monocytic TF expression and activation.
ISSN:0263-6484
DOI:10.1002/(SICI)1099-0844(200001/03)18:1<67::AID-CBF852>3.0.CO;2-N