High-throughput semi-automated 96-well liquid/liquid extraction and liquid chromatography/mass spectrometric analysis of everolimus (RAD 001) and cyclosporin a (CsA) in whole blood
A semi‐automated high‐throughput liquid/liquid extraction (LLE) assay was developed for RAD001 and cyclosporin A (CsA) in human blood. After addition of internal standard and ammonium hydroxide, samples were extracted twice with methyl tert‐butyl ether (MTBE). The organic extract was evaporated to d...
Gespeichert in:
Veröffentlicht in: | Rapid communications in mass spectrometry 2001-01, Vol.15 (12), p.898-907 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A semi‐automated high‐throughput liquid/liquid extraction (LLE) assay was developed for RAD001 and cyclosporin A (CsA) in human blood. After addition of internal standard and ammonium hydroxide, samples were extracted twice with methyl tert‐butyl ether (MTBE). The organic extract was evaporated to dryness and reconstituted in mobile phase. Where possible, sample transfer and LLE steps were automated using a Tomtec Quadra 96 workstation. Samples were analyzed using ESI‐LC/MS/MS employing the transitions of ([M + NH4]+ → [M + H]+) for CsA and ([M + NH4]+ → [M + H‐(CH3OH + H2O)]+) for RAD001, under isocratic chromatographic conditions (75:25, (v/v), acetonitrile/20 mM ammonium acetate) with a run time of 3.6 min. A lower limit of quantitation (LLOQ) of 0.368 ng/mL and 5.23 ng/mL was achieved for RAD001 and CsA, respectively, using a sample volume of 0.3 mL for the analysis. The method was validated over a 3‐day period and the resulting calibration curves had a correlation coefficient >0.99 over the concentration range 0.368 to 409 ng/mL and 5.24 to 1748 ng/mL for RAD001 and CsA, respectively. The inter‐day coefficient of variation (CV) was less than 15% at the LLOQ for both compounds. The method was applied to the analysis of clinical samples. Under normal working conditions four 96‐well plates could be extracted and LC/MS analysis completed in less than 28 h. A marked improvement in sample throughput efficiency was realized with this LLE method when compared to existing solid phase extraction (SPE) methods which deal with both RAD001 and CsA. Copyright © 2001 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0951-4198 1097-0231 |
DOI: | 10.1002/rcm.323 |