p53 Regulates Caveolin Gene Transcription, Cell Cholesterol, and Growth by a Novel Mechanism

Transcription of the human caveolin gene, directed by a TATA-less promoter, is downregulated in actively dividing cells during S-phase, together with free cholesterol (FC) efflux. It is upregulated by medium low density lipoprotein FC levels in quiescent cells. In this study, a common mechanism has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2000-02, Vol.39 (8), p.1966-1972
Hauptverfasser: Bist, Anita, Fielding, Christopher J, Fielding, Phoebe E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transcription of the human caveolin gene, directed by a TATA-less promoter, is downregulated in actively dividing cells during S-phase, together with free cholesterol (FC) efflux. It is upregulated by medium low density lipoprotein FC levels in quiescent cells. In this study, a common mechanism has been identified to coordinate the growth- and FC-dependent expression of caveolin. In human skin fibroblasts, transcription factors E2F/DP-1 and Sp1 bound to adjacent consensus sites at −151 to −138 bp of the caveolin promoter DNA sequence in a complex stabilized by tumor suppressor protein p53. Wild-type p53 also bound directly to DNA to a caveolin promoter sequence containing two consensus half-sites (−292 to −283 bp and −273 to −264 bp) for this transcription factor. SREBP-1, previously identified as a transcriptional regulator of caveolin expression in response to FC, mediated its effect via the same E2F/Sp1 site. Overexpression of E2F or p53 increased E2F binding to the −148 to −141 bp site, increased FC efflux, and inhibited cell division. The mutant protein p53( 143V → A) was inactive. Okadaic acid, previously shown to inhibit growth, FC efflux, and caveolin expression, inhibited E2F/Sp1 binding, while higher concentrations of extracellular FC increased it. The present findings provide a molecular link between the cell cycle and FC homeostatic effects of caveolin. These results also describe a novel mechanism of action for p53 in a TATA-less gene promoter and provide further evidence for a significant regulatory role for FC in cell cycle progression.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi991721h