Sulphaemoglobin formation in fish: a comparison between the haemoglobin of the sulphide-sensitive rainbow trout (Oncorhynchus Mykiss) and of the sulphide-tolerant common carp (Cyprinus Carpio)

A method for the quantitative determination of sulphaemoglobin (SHb) in a mixture of haemoglobin derivatives by spectral deconvolution is described. SHb formation was studied in haemolysates and in red blood cells of the sulphide-sensitive rainbow trout (Oncorhynchus mykiss) and of the sulphide-tole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2000-03, Vol.203 (Pt 6), p.1047-1058
Hauptverfasser: Völkel, S, Berenbrink, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for the quantitative determination of sulphaemoglobin (SHb) in a mixture of haemoglobin derivatives by spectral deconvolution is described. SHb formation was studied in haemolysates and in red blood cells of the sulphide-sensitive rainbow trout (Oncorhynchus mykiss) and of the sulphide-tolerant common carp (Cyprinus carpio). Addition of sulphide caused the formation of SHb in haemolysates of both animals. However, haemoglobin from common carp was much less sensitive to sulphide than was trout haemoglobin. The maximal obtainable SHb fraction was approximately 30 % in trout and 10 % in carp haemolysates. In both animals, the SHb fraction increased with increasing Hb and sulphide concentrations up to 100 micromol l(-)(1) and 1 mmol l(-)(1), respectively, and was favoured by a low pH. An increase of temperature between 5 and 25 degrees C strongly increased SHb formation in trout haemolysate. In contrast, temperature changes had almost no effect on SHb production in carp. Within trout red blood cells, approximately 7 % of total haemoglobin was converted to SHb during 60 min of incubation (with 2.5 mmol l(-)(1) sulphide), inducing a 20 % loss of haemoglobin oxygen-saturation. In carp red blood cells incubated under identical conditions, SHb formation was minimal and haemoglobin oxygen-saturation was not affected.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.203.6.1047