The nature and evolution of the association among digeneans, molluscs and fishes

Patterns of association of digenean families and their mollusc and vertebrate hosts are assessed by way of a new database containing information on over 1000 species of digeneans for life-cycles and over 5000 species from fishes. Analysis of the distribution of digenean families in molluscs suggests...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal for Parasitology 2001-07, Vol.31 (9), p.997-1011
Hauptverfasser: Cribb, T.H., Bray, R.A., Littlewood, D.T.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Patterns of association of digenean families and their mollusc and vertebrate hosts are assessed by way of a new database containing information on over 1000 species of digeneans for life-cycles and over 5000 species from fishes. Analysis of the distribution of digenean families in molluscs suggests that the group was associated primitively with gastropods and that infection of polychaetes, bivalves and scaphopods are all the results of host-switching. For the vertebrates, infections of agnathans and chondrichthyans are apparently the result of host-switching from teleosts. For digenean families the ratio of orders of fishes infected to superfamilies of molluscs infected ranges from 0.5 (Mesometridae) to 16 (Bivesiculidae) and has a mean of 5.6. Individual patterns of host association of 13 digenean families and superfamilies are reviewed. Two, Bucephalidae and Sanguinicolidae, are exceptional in infecting a range of first intermediate hosts qualitatively as broad as their range of definitive hosts. No well-studied taxon shows narrower association with vertebrate than with mollusc clades. The range of definitive hosts of digeneans is characteristically defined by eco-physiological similarity rather than phylogenetic relationship. The range of associations of digenean families with mollusc taxa is generally much narrower. These data are considered in the light of ideas about the significance of different forms of host association. If Manter's Second Rule (the longer the association with a host group, the more pronounced the specificity exhibited by the parasite group) is invoked, then the data may suggest that the Digenea first parasitised molluscs before adopting vertebrate hosts. This interpretation is consistent with most previous ideas about the evolution of the Digenea but contrary to current interpretations based on the monophyly of the Neodermata. The basis of Manter's Second Rule is, however, considered too flimsy for this interpretation to be robust. Problems of the inference of the evolution of patterns of parasitism in the Neodermata are discussed and considered so intractable that the truth may be presently unknowable.
ISSN:0020-7519
1879-0135
DOI:10.1016/S0020-7519(01)00204-1