Cloning, Overexpression, and Purification of Aminoglycoside Antibiotic Nucleotidyltransferase (2‘ ‘)-Ia:  Conformational Studies with Bound Substrates

Aminoglycoside nucleotidyltransferase (2‘ ‘)-Ia [ANT (2‘ ‘)-Ia] was cloned from Pseudomonas aeruginosa and purified from overexpressing Escherichia coli BL21(DE3) cells. The first enzyme-bound conformation of an aminoglycoside antibiotic in the active site of an aminoglycoside nucleotidyltransferase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2001-06, Vol.40 (24), p.7017-7024
Hauptverfasser: Ekman, D. R, DiGiammarino, E. L, Wright, E, Witter, E. D, Serpersu, E. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aminoglycoside nucleotidyltransferase (2‘ ‘)-Ia [ANT (2‘ ‘)-Ia] was cloned from Pseudomonas aeruginosa and purified from overexpressing Escherichia coli BL21(DE3) cells. The first enzyme-bound conformation of an aminoglycoside antibiotic in the active site of an aminoglycoside nucleotidyltransferase was determined using the purified aminoglycoside nucleotidyltransferase (2‘ ‘)-Ia. The conformation of the aminoglycoside antibiotic isepamicin, a psuedo-trisaccharide, bound to aminoglycoside nucleotidyltransferase (2‘ ‘)-Ia has been determined using NMR spectroscopy. Molecular modeling, employing experimentally determined interproton distances, resulted in two different enzyme-bound conformations (conformer 1 and conformer 2) of isepamicin. Conformer 1 was by far the major conformer defined by the following average glycosidic dihedral angles:  ΦBC = −65.26 ± 1.63° and ΨBC = −54.76 ± 4.64°. Conformer 1 was further subdivided into one major (conformer 1a) and two minor components (conformers 1b and 1c) based on the comparison of glycosidic dihedral angles ΦAB and ΨAB. The arrangement of substrates in the enzyme·metal-ATP·isepamicin complex was determined on the basis of the measured effect of the paramagnetic substrate analogue Cr(H2O)4ATP on the relaxation rates of substrate protons which were used to determine relative distances of isepamicin protons to the Cr3+. Both conformers of isepamicin yielded arrangements that satisfied the NOE restraints and the observed paramagnetic effects of Cr(H2O)4ATP. It has been suggested that aminoglycosides use both electrostatic interactions and hydrogen bonds in binding to RNA and that the contacts made by the A and B rings to RNA are the most important for binding [Fourmy, D., Recht, M. I., Blanchard, S. C., and Puglisi, J. D. (1996) Science 274, 1367−1371]. Comparisons based on the determined conformations of enzyme-bound aminoglycoside antibiotics also suggested that interactions of rings A and B with enzymes may be the major determinant in aminoglycoside binding to enzymes [Serpersu, E. H., Cox, J. R., DiGiammarino, E. L., Mohler, M. L., Ekman, D. R., Akal-Strader, A., and Owston, M. (2000) Cell Biochem. Biophys. (in press)]. The conformation of isepamicin bound to the aminoglycoside nucleotidyltransferase (2‘ ‘)-Ia, determined in this work, lent further support to this theory. Furthermore, comparison of enzyme-bound conformations of isepamicin to the RNA-bound conformation of gentamycin C1a also showed remarkable simi
ISSN:0006-2960
1520-4995
DOI:10.1021/bi002827b