Alternative cyclization in GFP-like proteins family. The formation and structure of the chromophore of a purple chromoprotein from Anemonia sulcata
Anemonia sulcata purple protein (asFP595) belongs to a family of green fluorescent protein (GFP)-like proteins from the Anthozoa species. Similar to GFP, asFP595 apparently forms its chromophore by modifying amino acids within its polypeptide chain. Until now, the GFP-like proteins from Anthozoa wer...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2001-06, Vol.276 (24), p.21012-21016 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anemonia sulcata purple protein (asFP595) belongs to a family of green fluorescent protein (GFP)-like proteins from the Anthozoa species. Similar to GFP, asFP595 apparently forms its chromophore by modifying amino acids within its polypeptide chain. Until now, the GFP-like proteins from Anthozoa were thought to contain chromophores with the same imidazolidinone core as GFP. Mass spectral analysis of a chromophore-containing tryptic pentapeptide from asFP595 demonstrates that chromophore formation in asFP595 is stoichiometrically the same as that in GFP: one H(2)O and two H(+) are released while a Schiff base and dehydrotyrosine are formed. However, structural studies of this asFP595 chromopeptide show that in contrast to GFP, the other peptide bond nitrogen and carbonyl carbon are required for chromophore cyclization, a reaction that yields the six-membered heterocycle 2-(4-hydroxybenzylidene)-6-hydroxy-2,5-dihydropyrazine. Spectrophotometric titration reveals three pH-dependent forms of the asFP595 chromopeptide: yellow (absorption maximum = 430 nm) at pH 3.0; red (absorption maximum = 535 nm) at pH 8.0; and colorless (absorption maximum = 380 nm) at pH 14.0. The pK(a) values for these spectral transitions (6.8 and 10.9) are consistent with the ionization of the phenolic group of dehydrotyrosine and deprotonation of the amidinium cation in the chromophore heterocycle, respectively. The amidinium group in asFP595 accounts for the unique absorption spectrum of the protein, which is substantially red-shifted relative to that of GFP. When the asFP595 chromophore cyclizes, the Cys-Met bond adjacent to the chromophore hydrolyzes, splitting the chromoprotein into 8- and 20-kDa fragments. High performance liquid chromatography analysis of a tryptic digest of denatured asFP595 shows that a pentapeptide with the cleaved Cys-Met bond is the only fragment associated with the red-shifted absorbance. These results imply that fragmentation of asFP595 is a critical step in protein maturation. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.M100500200 |