When the feasibility of an ecosystem is sufficient for global stability?

We show via a Liapunov function that in every model ecosystem governed by generalized Lotka–Volterra equations, a feasible steady state is globally asymptotically stable if the number of interaction branches equals n−1, where n is the number of species. This means that the representative graph for w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2000, Vol.163 (1), p.97-102
Hauptverfasser: Porati, Alfredo, Ilde Granero, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show via a Liapunov function that in every model ecosystem governed by generalized Lotka–Volterra equations, a feasible steady state is globally asymptotically stable if the number of interaction branches equals n−1, where n is the number of species. This means that the representative graph for which the theorem holds is a `tree' and not only an alimentary chain. Our result is valid also in the case of non-homogeneous systems, which model situations in which input fluxes are present.
ISSN:0025-5564
1879-3134
DOI:10.1016/S0025-5564(99)00049-8