Trp1, a candidate protein for the store-operated Ca(2+) influx mechanism in salivary gland cells

The trp gene family has been proposed to encode the store-operated Ca(2+) influx (SOC) channel(s). This study examines the role of Trp1 in the SOC mechanism of salivary gland cells. htrp1, htrp3, and Trp1 were detected in the human submandibular gland cell line (HSG). HSG cells stably transfected wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-02, Vol.275 (5), p.3403-3411
Hauptverfasser: Liu, X, Wang, W, Singh, B B, Lockwich, T, Jadlowiec, J, O'Connell, B, Wellner, R, Zhu, M X, Ambudkar, I S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The trp gene family has been proposed to encode the store-operated Ca(2+) influx (SOC) channel(s). This study examines the role of Trp1 in the SOC mechanism of salivary gland cells. htrp1, htrp3, and Trp1 were detected in the human submandibular gland cell line (HSG). HSG cells stably transfected with htrp1alpha cDNA displayed (i) a higher level of Trp1, (ii) a 3-5-fold increase in SOC (thapsigargin-stimulated Ca(2+) influx), determined by [Ca(2+)](i) and Ca(2+)-activated K(+) channel current measurements, and (iii) similar basal Ca(2+) permeability, and inhibition of SOC by Gd(3+) but not by Zn(2+), as compared with control cells. Importantly, (i) transfection of HSG cells with antisense trp1alpha cDNA decreased endogenous Trp1 level and significantly attenuated SOC, and (ii) transfection of HSG cells with htrp3 cDNA did not increase SOC. These data demonstrate an association between Trp1 and SOC and strongly suggest that Trp1 is involved in this mechanism in HSG cells. Consistent with this suggestion, Trp1 was detected in the plasma membrane region, the proposed site of SOC, of acinar and ductal cells in intact rat submandibular glands. Based on these aggregate data, we propose Trp1 as a candidate protein for the SOC mechanism in salivary gland cells.
ISSN:0021-9258
DOI:10.1074/jbc.275.5.3403