Role of Tyrosine Phosphorylation in the Regulation of the Interaction of Heterogenous Nuclear Ribonucleoprotein K Protein with Its Protein and RNA Partners

The heterogeneous nuclear ribonucleoprotein K protein recruits a diversity of molecular partners and may act as a docking platform involved in such processes as transcription, RNA processing, and translation. We show that K protein is tyrosine-phosphorylated in vitro by Src and Lck. Treatment with H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-02, Vol.275 (5), p.3619-3628
Hauptverfasser: Ostrowski, Jerzy, Schullery, Daniel S., Denisenko, Oleg N., Higaki, Yugi, Watts, Julian, Aebersold, Rudi, Stempka, Luise, Gschwendt, Michael, Bomsztyk, Karol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The heterogeneous nuclear ribonucleoprotein K protein recruits a diversity of molecular partners and may act as a docking platform involved in such processes as transcription, RNA processing, and translation. We show that K protein is tyrosine-phosphorylated in vitro by Src and Lck. Treatment with H2O2/Na3VO4, which induces oxidative stress, stimulated tyrosine phosphorylation of K protein in cultured cells and in intact livers. Tyrosine phosphorylation increased binding of Lck and the proto-oncoprotein Vav to K protein in vitro. Oxidative stress increased the association of K protein with Lck and Vav, suggesting that tyrosine phosphorylation regulates the ability of K protein to recruit these effectors in vivo. Translation-based assay showed that K protein is constitutively bound to many mRNAs in vivo.Native immunoprecipitated K protein-mRNA complexes were disrupted by tyrosine phosphorylation, suggesting that the in vivobinding of K protein to mRNA may be responsive to the extracellular signals that activate tyrosine kinases. This study shows that tyrosine phosphorylation of K protein regulates K protein-protein and K protein-RNA interactions. These data are consistent with a model in which functional interaction of K protein is responsive to changes in the extracellular environment. Acting as a docking platform, K protein may bridge signal transduction pathways to sites of nucleic acid-dependent process such as transcription, RNA processing, and translation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.275.5.3619