Signal transduction interactions between CB1 cannabinoid and dopamine receptors in the rat and monkey striatum

Signal transduction interactions between the CB1 cannabinoid and 1 and D2 dopamine receptor systems were studied in rat (Sprague Dawley) and monkey (Macaca fascilaris) striatal membranes. The D2 agonist quinelorane inhibited forskolin (10 microM)-stimulated adenylyl cyclase in a dose-dependent manne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropharmacology 2001-06, Vol.40 (7), p.918-926
Hauptverfasser: MESCHLER, Justin P, HOWLETT, Allyn C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Signal transduction interactions between the CB1 cannabinoid and 1 and D2 dopamine receptor systems were studied in rat (Sprague Dawley) and monkey (Macaca fascilaris) striatal membranes. The D2 agonist quinelorane inhibited forskolin (10 microM)-stimulated adenylyl cyclase in a dose-dependent manner (26% and 20% maximal inhibition; EC50 = 2 and 0.5 microM, in rats and monkeys, respectively) and maximal inhibition was completely blocked by the D2 antagonist sulpiride (10 microM). The CB1 agonist desacetyllevonantradol inhibited forskolin-stimulated adenylyl cyclase (18% and 36% maximal inhibition; EC50 = 160 and 73 nM, in rats and monkeys, respectively) and the CB1 antagonist SR141716A (10 microM) completely blocked the maximal inhibition. Combined addition of > EC(90) concentrations of quinelorane (10, 30 microM) and desacetyllevonantradol (1 microM) resulted in no greater inhibition than that produced by either drug alone, indicative of signal transduction convergence between the D2 and CB1 receptor systems. The D1 agonist 6-Br-APB (3-allyl-6-bromo-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin) produced a dose-dependent stimulation of adenylyl cyclase (45% and 26% stimulation; EC50 = 24 and 32 nM, in rat and monkey, respectively), and maximal stimulation was completely blocked by the D1 antagonist SCH23390 (1 microM). D1 agonist-stimulated activity could be inhibited to basal levels with desacetyllevonantradol (1 microM), indicative of D1 and CB1 signal transduction convergence. The data suggest that CB1 receptors are co-localized with D1 or D2 receptors on the same population of striatal membranes and can interact at the level of G-protein/adenylyl cyclase signal transduction. Similar results obtained with both rat and monkey membranes indicate that striatal dopamine and cannabinoid interactions are conserved for these two species.
ISSN:0028-3908
1873-7064
DOI:10.1016/S0028-3908(01)00012-0