Fatty Acid Composition of Four Microsporidian Species Compared to that of their Host Fishes

The fatty acid composition of four microsporidian species (Glugea atherinae, Spraguea lophii, Glugea americanus, and Pleistophora mirandellae) and their host fishes has been determined using gas chromatography. Twenty-four fatty acids were identified with differences in relative abundance of fatty a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of eukaryotic microbiology 2000-01, Vol.47 (1), p.7-10
Hauptverfasser: Biderre, Corinne, Babin, Francois, Vivares, Christian P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fatty acid composition of four microsporidian species (Glugea atherinae, Spraguea lophii, Glugea americanus, and Pleistophora mirandellae) and their host fishes has been determined using gas chromatography. Twenty-four fatty acids were identified with differences in relative abundance of fatty acids among the four parasites. Certain even-saturated fatty acids were found in a very high proportion: palmitic acid (16:0) represented one-third of total fatty acids in Pleistophora mirandellae. The level of docosahexaenoic acid (22:6ω3) attained 26–28% in Glugea atherinae, Spraguea lophii, and Glugea americanus, but only 8–9% in P. mirandellae. With respect to fatty acid compositions of host organs, some significant differences were evident between marine and freshwater fishes. Palmitic acid was prevalent in the marine fishes, Atherinae boyeri and Lophius piscatorius, and oleic acid (18:1ω9) in the freshwater fish Leuciscus cephalus. The proportion of docosahexaenoic acid in marine fishes was two or three times as great as in freshwater fish Leuciscus. The high polyunsaturated fatty acid content in both parasites and host fishes may be related to the scavenging of these fatty acids by the parasites rather than a microsporidia-specific fatty acid biosynthesis pathway.
ISSN:1066-5234
1550-7408
DOI:10.1111/j.1550-7408.2000.tb00002.x