Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure

Peritrophic membrane (PM) structure and the effects of dietary wheat germ agglutinin (WGA) on PM formation were studied in larvae of the European corn borer (ECB), Ostrinia nubilalis, and the tobacco hornworm (THW), Manduca sexta. Growth of ECB was strongly inhibited by low amounts of WGA in the die...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of insect biochemistry and physiology 2001-06, Vol.47 (2), p.100-109
Hauptverfasser: Hopkins, Theodore L., Harper, Marc S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peritrophic membrane (PM) structure and the effects of dietary wheat germ agglutinin (WGA) on PM formation were studied in larvae of the European corn borer (ECB), Ostrinia nubilalis, and the tobacco hornworm (THW), Manduca sexta. Growth of ECB was strongly inhibited by low amounts of WGA in the diet (0.05%), whereas THW was not affected by amounts of up to 2%. In ECB larvae, chitin microfibrils were secreted to form an orthogonal network within the apical region of the anterior midgut microvilli. The network then moved to the tips of the microvilli where proteinacious matrix was added prior to delamination of a single PM into the lumen to enclose the food bolus. Multiple PMs rapidly appeared as the food moved posteriorly and some of these became greatly thickened in the middle and posterior regions of the midgut. WGA in the diet caused hypersecretion of unorganized PM in the anterior midgut lumen, disintegration of microvilli, and cessation of feeding. It was also shown to bind to both the chitinous network and to several PM proteins, perhaps causing voids in the PM and sparse matrix material. This allowed the passage of food particles through a defective PM into the ectoperitrophic space and penetration into the microvillar brush border. Stimulation of PM secretion and cessation of feeding may have been a response to damage to the brush border. Unlike ECB, the chitinous network of THW is a randomly organized felt‐like structure embedded in a proteinaceous matrix. This PM is secreted as a thin multilayered structure in the anterior region of the midgut, but multiple and thickened PMs occur in the middle and posterior lumens of the midgut. THW tolerated high amounts of WGA in its diet with no disruption of PM formation or inhibition of growth. WGA did accumulate as large masses embedded in the PM, but caused no voids that would allow the penetration of food particles and subsequent damage to the brush border. Therefore, differences in PM formation and structure between ECB and THW appeared to affect how WGA interacts with chitinous and proteinaceous components of the PM and subsequent effects on larval feeding and growth. Arch. Insect Biochem. Physiol. 47:100–109, 2001. © 2001 Wiley‐Liss, Inc.
ISSN:0739-4462
1520-6327
DOI:10.1002/arch.1040