The Neuronal Microtubule-Associated Protein 1B Is under Homeoprotein Transcriptional Control

To identify genes regulated by homeoprotein transcription factors in postnatal neurons, the DNA-binding domain (homeodomain) of Engrailed homeoprotein was internalized into rat cerebellum neurons. The internalized homeodomain (EnHD) acts as a competitive inhibitor of Engrailed and of several homeopr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2001-05, Vol.21 (10), p.3350-3359
Hauptverfasser: Montesinos, Maria Luz, Foucher, Isabelle, Conradt, Marcus, Mainguy, Gaell, Robel, Laurence, Prochiantz, Alain, Volovitch, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To identify genes regulated by homeoprotein transcription factors in postnatal neurons, the DNA-binding domain (homeodomain) of Engrailed homeoprotein was internalized into rat cerebellum neurons. The internalized homeodomain (EnHD) acts as a competitive inhibitor of Engrailed and of several homeoproteins (Mainguy et al., 2000). Analysis by differential display revealed that microtubule-associated protein 1B (MAP1B) mRNA is upregulated by EnHD. This upregulation does not require protein synthesis, suggesting a direct effect of the homeodomain on MAP1B transcription. The promoter region of MAP1B was cut into several subdomains, and each subdomain was tested for its ability to bind Engrailed and EnHD and to associate with Engrailed-containing cerebellum nuclear extracts. In addition, the activity, and regulation by Engrailed, of each subdomain and of the entire promoter were evaluated in vivo by electroporation in the chick embryo neural tube. These experiments demonstrate that MAP1B promoter is regulated by Engrailed in vivo. Moreover, they show that one promoter domain that contains all ATTA homeoprotein cognate binding sites common to the rat and human genes is an essential element of this regulation. It is thus proposed that MAP1B, a cytoskeleton protein involved in neuronal growth and regeneration, is under homeoprotein transcriptional regulation.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.21-10-03350.2001