Main Chain and Side Chain Dynamics of a Heme Protein:  15N and 2H NMR Relaxation Studies of R. capsulatus Ferrocytochrome c2

A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is presented. (15)N relaxation measurements confirm earlier results indicating that R. capsulatus ferrocytochrome c(2) exhibits mino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2001-06, Vol.40 (22), p.6559-6569
Hauptverfasser: FLYNN, Peter F., BIEBER URBAUER, Ramona J., ZHANG, Hui, LEE, Andrew L., WAND, A. Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is presented. (15)N relaxation measurements confirm earlier results indicating that R. capsulatus ferrocytochrome c(2) exhibits minor rotational anisotropy in solution. The current study is focused on the use of deuterium relaxation in side chain methyl groups, which has been shown to provide a detailed and accurate measure of internal dynamics. Results obtained indicate that the side chains of ferrocytochrome c(2) exhibit a wide range of motional amplitudes, but are more rigid than generally found in the interior of nonprosthetic group bearing globular proteins. This unusual rigidity is ascribed to the interactions of the protein with the large heme prosthetic group. This observation has significant implications for the potential of the heme-protein interface to modulate the redox properties of the protein and also points to the need for great precision in the design and engineering of heme proteins.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi0102252