High-resolution structures of the oxidized and reduced states of cytochrome c554 from Nitrosomonas europaea

Cytochrome c554 (cyt c554) is a tetra-heme cytochrome involved in the oxidation of NH3 by Nitrosomonas europaea. The X-ray crystal structures of both the oxidized and dithionite-reduced states of cyt c554 in a new, rhombohedral crystal form have been solved by molecular replacement, at 1.6 A and 1.8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J.Biol.Inorg.Chem.6:390,2001 2001, 2001-04, Vol.6 (4), p.390-397
Hauptverfasser: Iverson, T M, Arciero, D M, Hooper, A B, Rees, D C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytochrome c554 (cyt c554) is a tetra-heme cytochrome involved in the oxidation of NH3 by Nitrosomonas europaea. The X-ray crystal structures of both the oxidized and dithionite-reduced states of cyt c554 in a new, rhombohedral crystal form have been solved by molecular replacement, at 1.6 A and 1.8 A resolution, respectively. Upon reduction, the conformation of the polypeptide chain changes between residues 175 and 179, which are adjacent to hemes III and IV. Cyt c554 displays conserved heme-packing motifs that are present in other heme-containing proteins. Comparisons to hydroxylamine oxidoreductase, the electron donor to cyt c554, and cytochrome c nitrite reductase, an enzyme involved in nitrite ammonification, reveal substantial structural similarity in the polypeptide chain surrounding the heme core environment. The structural determinants of these heme-packing motifs extend to the buried water molecules that hydrogen bond to the histidine ligands to the heme iron. In the original structure determination of a tetragonal crystal form, a cis peptide bond between His129 and Phe130 was identified that appeared to be stabilized by crystal contacts. In the rhombohedral crystal form used in the present high-resolution structure determination, this peptide bond adopts the trans conformation, but with disallowed angles of phi and psi.
ISSN:0949-8257
1432-1327
DOI:10.1007/s007750100213